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The following report summarizes the activity carried out under the NASA

Grant entitled " Dynamic Analysis of a Two Member Manipulator Arm"

NAGl-1997 from March 16, 1996 through March 16, 1997.

This investigation was originally proposed by Dr. Elias Abu-Saba and he was

the principal investigator when the grant was awarded. However, Dr. Abu-
Saba retired from the North Carolina A & T State University, on August 15,

1995. Since Dr. Abu-Saba has retired, no work has been done on this project.

In December, 1995, both Dr. Shen and McGinley expressed an interest in

completing this work. After discussions with the technical monitor of the

project, Dr. R. Montgomery, application procedures were started to approve

replacement of the Principal Investigator on this NASA Grant. The request
asked that Dr. W. Mark McGinley and Dr. Y. Shen be made Co-PI's on this

project.

Since receiving authorization to work on this project, a computer model has

been developed and a number of simulations have been run. The attached

DRAFT paper summarizes the model and the result of the simulations. It

appears that this method of damping vibrations has great potential.

During this period of the project, a NO-COST Extension was applied for and

granted so that the new ending date of the project will be July 31, 1997. This

extension was sought to allow Dr. Shen to finish the modifications of the

attached paper and present at the Space Studies Institute Conference of

Space Manufacturing, May 8 - 11, 1997.



Draft Technical Paper for the Space
Studies Institute - Conference of Space
Manufacturing, May 8 - 11, 1997.
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Abstract

Attenuating start-up and stopping vibrations when maneuvering

large payloads attached to flexible manipulator systems is a great concern

for many space missions. To address this concern, it was proposed that the

use of smart materials, and their applications in smart structures, may

provide an effective method of control for aerospace structures. In this

paper, a modified finite element model has been developed to simulate the

performance of piezoelectric ceramic actuators, and was applied to a

flexible two-arm manipulator system. Connected to a control voltage, the

piezoelectric actuators produce control moments based on the optimal

control theory. The computer simulation modeled the end-effector

vibration suppression of the NASA manipulator testbed for berthing

operations of the Space Shuttle to the Space Station. The results of the

simulation show that the bonded piezoelectric actuators can effectively

suppress follow-up vibrations of the end-effector, stimulated by some
external disturbance.

Introduction

The handling of a large spacecraft using a robotic manipulator is an

important technology for future space missions. These operations require

precision telerobotic maneuvering of large payloads using the Remote

Manipulator System (RMS) of the Space Shuttle. During start-up and

stopping, the direction of motion of a large payload is difficult to predict

because of start-up transient impulses and the subsequent vibration in the

system produced by the flexibility of the manipulator-coupled system.

One solution to this vibratory control problem is to conduct the operation

slowly, in steps, and minimize the excitation. However, if objectionable

vibrations do occur, then extra time is required for them to settle out. This

solution will extend the time required for operations, and since the cost of

orbit time is extreme high, the cost effectiveness of the mission will be



reduced. In an effort to find more cost effective solutions, NASA continues
to develop telerobotic technology that addresses these problemstl,21. As
part of the effort described above, this investigation proposed to develop a
methodology for end-effector vibration suppression on a flexible
manipulator systemby using piezoelectric actuators.

The rapid development of the smart materials and their applications
in smart structures shows great potential for the control of aerospace
structures. Piezoelectric actuators, as a specific set of these smart
materials, appear the most appropriate for this application. In general,
two basic approaches, passive damping and active vibration control, have
been studied for the control of smart structurest3,4.5J. Structures with
bonded/embedded sensors and actuators made of piezoelectric materials
are examples of actively controlled structures. In addition, the high
stiffness of some piezoelectric materials, typically a ceramic, provides an
advantage over viscoelastic materials as a passive damping mechanism.
The material properties of the piezoelectric ceramic also has the advantage
of being relatively stable with temperatureover their operating range.

A linear elastic finite element model for piezo-layer bonded beams,
based on general finite element approach, had been developed in the
authors' previous work. The previous investigation applied a modified
finite element model to the optimal controller design for vibration
suppression of a cantilevered composite beamt6_. This approach is
extended by the investigation described in this paper, and includes the
development of a joint element for the end-effector vibration suppression
of a flexible two-arm manipulating system.

The system studied in this investigation is the NASA manipulator
testbed for the research of berthing operations of the space shuttle to the
space station, which consists of two flexible links and three revolute joints.
This testbed was assumed to be constrained in the horizontal plane for the
modeling and analysis. Figure 1 shows a schematic representation of the
testbed. Each of the two links shown can be modeled as individual frame
elements, some with bonded piezoelectric actuators. In response to a
control voltage, the piezoelectric actuators can produce control moments
and be usedto dampenvibrations of the manipulator arm.

The following sections describe the model development and
summarize the computer simulation results. This simulation was
conducted on the modeled manipulator system, and assumes that an
external disturbance causes an initial deflection in one of the arms. This
initial deflection stimulates a vibration of the manipulator system and the



bonded piezoelectric actuators are used to suppress the follow-up
vibration of the end-effector, using control signals based on the optimum
control theory.

Modified Finite Element Model for the Piezo-Layer Bonded Beam

The general finite element model for deflection analysis of beam-like

structures can be characterized by:

tin{y}+Vq{y}= (1)

For each beam element, the nodal displacement vector consists of the axial

and lateral displacements and slopes at the two nodal points, that is,

{y}, :{l, li,'Pi,Oi,l, li+l,I)i+l,Oi+l} r , and the nodal force vector consists of axial forces,

shears and bending moments at the same nodal points, that is,

{f}_={V.Q,.M_.V+I,Qi+,,Mi+I} r. The stiffness matrix [k]i and the consistent mass

matrix [m]i of the ith beam element take the forms of [7]

Fig. 1 Schematic Diagram of the NASA Manipulator Testbed
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where, 1i is the length of the ith beam element, m i=pAili its mass, EiI i its

flexural rigidity.

If a piezo-layer is bonded to one surface of a beam element, the

neutral axis of the composite section will change its location (D = depth of

neutral axis, Figure 2), and this location can be determined based upon the

force balance in the longitudinal direction of the elementt<,

1 [Ep172v+ Ebh_ + 2Ej, phb ]
D = 2[Ephp + Ebh b ]

(2)

Figure 2 shows a schematic drawing of a piezo-layer bonded beam

element, where, 1, is the length of the ith element, b is the width, hp and hb

are the thickness of the piezo-actuator and the beam respectively, Mp is

the bending moment applied to the actuator and M b is the bending

moment applied to the beam. The equivalent flexural rigidity EiI, for the

ith composite beam can be computed based upon (EJ_) e and (E_I_) b through

the expression



E,s, = _,,I,p + E,_S,b (3)

(Note that these I values are computed about the neutral axis of the

composite section.)
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Fig. 2 The ith Element of a Composite Beam

If a voltage e is applied to the piezoelectric actuator, an average

normal strain, ep =[d/hp]e, is introduced in the layer, where d is the electric

charge constant of the piezoelectric material. This strain results in a

normal stress ap =Ep[d/hp]e, which produces a bending moment as given by,

mp=I_f__b+hP)ap(by)cly. Substitution of the expressions for er e and D into the

expression for M e , we find that

= c e (4)Mp p

where, c = dbEEb/7 _[h +h_] is the control-moment coefficient.
" 2[_,,,_,,+&&l

In summary, it is clear from the above development that a

conventional finite element model can be formulated for the piezo-layer

bonded beam-like structure if following modifications are made: (1) the

location of the neutral axis of the element is specified by D, (Eq. 2); (2) the

equivalent flexural rigidity E_I_ of the element accounts for the composite

material behavior, (Eq. 3); (3) the ith element force vector {f}_ includes the

piezo-layer bending moment M e , that is,

{f}, = [V., Q_ ,Mb# + .?i//t_ ,V,+l, Q_+_, J4b,+l + J"/p,+l ]r.



Stiffness Matrix of a Revolute Joint

The function of a revolute joint is to connect two links of a kinematic

assemblage. The connected links can have relative rotational motion, but

the two nodes (say, I and J) on each of the connected elements,

respectively, remain coincident with each other (the compatibility

condition). For a planar manipulating system, each node has three degrees

of freedom, that is, the translational motions u and v, and rotational motion

0. Since a joint consists of two nodes I and J, even though they are

coincident, a joint will still have six degrees of freedom. Assuming that the

translational stiffnesses are represented by translational spring constants

k x and ky, and the rotational stiffness by rotational spring constant ko, the

compatibility condition and moment equilibrium will produce the following

six equations at each joint: (in matrix form),

- k x 0 0 -k 0 0

0 ky 0 0 -ky 0

0 0 k o 0 0 -k o

-k_. 0 0 k. 0 0

0 -k 0 0 k 0
y y

0 0 -k o 0 0 lco

l iui 0

vi 0

O_ = "r

,r!,
Oy .

(5)

where, the coefficient matrix, designated as [k]_, is the stiffness matrix of a

Joint R, and "r is the joint moment. Note that [k], is singular for an

individually joint, that is, Det[k]_=O, but it will not bring singularity into the

global system, since the global system requires superposition to be applied

at each joint. The inertia of the joint was assumed to be negligible and

therefore neglected.

Optimal Controller Design for End-Effector Vibration Suppression

Ignoring any inherent passive damping effects, the system equation

can be written in the state-space form, that is,

{2} = [AI{ A'}+[BI{.} (6)

where, the state vector is defined as {x}={x_,x2}r={y,P} T, the system matrix,

[ :] [: 0]o the control influence matrix, [B]= and the control
[A]= _M_IK , M_ l ,

(force) vector, {u} = {O,F}T.



According to the optimal control theoryt81, the linear quadratic
performance index, J, can be formulated as

(7)

The optimal controller solution for this linear quadratic regulator problem
is u=-R-1px, where matrix [P] can be obtained from the steady-state matrix

Riccati equation, A r P+PA-PBRIB r P=-Q.

The solution to the state-space equation, (Eq. 6), can be obtained

from a recursive formula provided that the initial conditions {X} o are

knownt91, that is,

X{ },+, +IAl-'(e"-:) (8)

where, the matrix

A 2 (At) 2 i 3 (Z_t)3
eASt = 1+ A(At)_ -- _ ---_

2! 3!

A-l(e A_ -1)=1(At)+ A(At)Z A2 (At)3I---t- ...... .

2! 3!

exponential

, and

eASt is defined as

consequently,

However, if the optimal control solution has been found, then the

state-space equation (Eq. 6) can be simplified as

{2} =[7]{x} (9)

where the new system matrix with implementation of optimal control is

defined as [7]=[AI-[B][_I-'[B]r[PI. The same method described above for the

full state-space equation, (Eq. 6), can be used to solve this simplified

version (Eq. 7). If the stiffness and mass matrices incorporate the models

of the composite elements and joints described in the previous sections,

then the resulting solution of Eq. 9, will model the behavior of the two arm

system over time.

Computer Simulation

The system used to test the model and analysis techniques described

previously was the NASA manipulator Testbed for the research of the

Space Shuttle to the Space Station berthing operations. This research

testbed is designed to model the berthing process, but is constrained to



motions in the horizontal planeEl_. Figure 1 illustrates the principal
components of the facility. The Space Station Freedom (SSF) Mobility Base
is an existing Marshall Space Flight Center (MSFC) Vehicle that has a mass
of 2156.4 kg, and is referred to, herein, as Air Bearing Vehicle 1 (ABV1).

It represents the Space Station in the berthing operation, and is considered

a payload on the end-effector. This vehicle is levitated on the MSFC flat

floor facility using low flow-rate bearings. The other vehicle, the Space

Shuttle (SS) Mobility Base, designated as Air Bearing Vehicle 2 (ABV2), is

attached to the wall of the flat floor facility through the shoulder joint, and

can be connected to the SSF Mobility Base with a flexible two-arm

manipulator system. Each of these arms are made of a 2.74 m long

aluminum I-beam with a mass of 37.089 kg, the flanges of which are 0.076

m by 0.0032 m and the web is 0.1 m by 0.0032 m. There are three

revolute joints: shoulder joint S, elbow joint E, and wrist joint W.

Since the dimension of the end-effector with the payload can not be,

in general, comparable with dimensions of the two arms, the end-effector

will be modeled as a rigid body with a mass point at the wrist joint. The

elbow joint (E Joint) and wrist joint (W Joint) are supported by air

bearings. If it is assumed that the shoulder joint (S Joint) and elbow joint

are independently driven by individual actuators, the control moments "c,

and "re act on the revolute joints S and E, respectively. The joint

compliances are characterized by three spring constants: kx in x-direction,

ky in y-direction, and ko for rotation. The corresponding input joint

torques are transmitted through the arm linkage to the end-effector,

where the resultant force and moment act upon the Space Station Freedom

Mobility Base (ABV1). For the simulation, each link was divided into five

frame elements. The numbering system for finite elements and nodal

points are as shown in Figure 3.
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Fig. 3 A Finite Element Model of A Flexible Two-Arm Manipulator System

with Piezoelectric Actuators Bonded on Some of the Elements

The initial system configuration for computer simulation was

assumed as follows. The up-arm (elements 6 through 10) formed a 600

angle with the global X-axis, and the forearm (elements 1 through 5)

formed a 30 o angle with the horizontal. Because the two arms are not in

the same orientation, it is necessary to account for the alignment of the

two arms. The coordinate transformation matrix between the local

element coordinate system z-y and the global coordinate system Z-Y can be

expressed as

[L] =

1 m 0 0 0 O-

-m / 0 0 0 0

0 0 1 0 0 0

0 0 0 / 171 0

0 0 0 -m 1 0

0 0 0 0 0 1

where, the direction cosines are l=cos(x,X), and m=cos(x,Y), respectively.

The element stiffness matrix in global coordinate system is then

[kl,=[L]r[k'l,[L], where [k'], is the element stiffness matrix in local coordinate

system. The same transformation was also applied to the element mass

matrix. In addition, the element nodal load vector in global coordinate



system can be obtained by{f}i=[Llr{f'},, where {f'}, is the element nodal

load vector in local coordinate system.

For aluminum, the elastic modules was taken aS,Eb=7.6xlOSN/m 2, and

density as p=2840kg/m 3. The second moment of area for the given /-beam

cross-section Ib=0.1562X10-Sm 4 . For convenience, an equivalent rectangular

cross section with height h=0.0627 m and width b=0.076 m is used in

simulation, which provides the same value of the second moment of area.°

It was also assumed that the piezoelectric ceramic actuators, with

thickness hp=O.O03 m, were bonded on one side of the frame elements 2, 4,
6, 8, and 10. The piezoelectric layers were assumed to have the following

properties" elastic modules E, = 6.3x108N/m 2, second moment of area

lp = 0.224 x 10%n 4 , the electric charge constant d = 5.3x10 -l°m/v.

During the computer simulations both weighting function matrices,

[Q] and [S] were set equal to the identity matrix. This assumes that each

action will have equal weight on control. Further study of the actual

values of these matrices may improve the effectiveness of this control

strategy and should be the subject of further study.

It can be assumed that an external disturbance causes an initial

deflection of the forearm. In the simulations, the forearm nodes 7, 9, 11

were assumed to have an initial 0.01 m deformation parallel to the X-axis

and 0.1 m initial deformation parallel to the Y-axis. Nodes 8 and 10 were

assumed to have the same deformations, but in opposite directions. These

initial deformations would then result in a vibration of the manipulator

system, when released. The computer simulation predicted the response

of the system after released and under the action of optimal control

moments provided by the piezoelectric actuators. The computational

results show that bonded piezoelectric actuators can effectively suppress

the follow-up vibration of the end-effector as shown in Figures 4 and 5,

where Figure 4 indicates the decayed time history of node 11 in X-

direction, and Figure 5 indicates the decayed time history of node 11 in Y-

direction.
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Fig. 4 The Decayed Response Time History of the End-Effector in the X-
Direction

Y - Response vs Time
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Fig. 5 The Decayed Response Time History of the End-Effector in the Y-
Direction

Concluding Remarks

A modified linear elastic finite element model, based on the general

finite element method, has been developed to include the effects of

piezoelectric ceramic actuators. This model has been applied to the end-

effector vibration suppression of a flexible two-arm manipulator system.

The control methodology uses an optimized technique that appears to

effectively attenuate system vibrations and thus may be an effective

means to control start-up and stopping vibrations present when

maneuvering large payloads on space missions.
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